How important are sugar syrup ratios?

Although sugar syrup must be the simplest concoction in the history of man, it generates questions galore, many containing complex ratios, weights, and equations. When I make syrup, I simply dump some sugar in a bucket, add some lukewarm water till it looks right, and stir. When the crystals dissolve, I pour it in a feeder. Easy peasy and no math needed.

Why we feed syrup

We feed sugar syrup to honey bees in the spring to help new colonies get started, especially those that began as packaged bees. This feed gives them a leg up because instead of having to forage for a source of energy, they can eat at home and begin building a nursery right away. Colonies that barely survived the winter can also benefit from syrup.

In the fall, honey bees colonies that failed to store sufficient honey for winter (or were over-harvested) may be fed syrup in the hope they can make up the food deficit before cold weather arrives.

For generations, beekeepers have tried to help the bees along by tweaking the ratio of sugar to water in the syrup. For spring feed we try to simulate nectar by using a light syrup. In the fall we try to save the bees some work by feeding syrup with a much higher sugar content. A thicker syrup means the bees have to do less work to get it cured and capped.

Humans decided on the ratios, not bees

But here’s the catch: the sugar-to-water ratios we use are man-made conventions. The honey bees did not tell us what to provide, and they don’t carry mini hydrometers to test for specific gravity.

The sugar-to-water ratio in naturally-occurring nectar ranges from the impossibly low to super high. Honey bees prefer sweeter nectar, a preference which causes them to flock to things like apples, with nectar containing about 40% sugar, and avoid things like pears, with nectar containing about 15% sugar. But each plant has a different sugar content from every other plant, and even the weather, the time of day, and the age of the flower make a difference.

So while the honey bees are out foraging on every combination of sugar to water you could possibly imagine, well-intentioned beekeepers are home micromanaging their syrup, measuring and stirring and tweaking to arrive at some magical ratio that the bees don’t give a rip about. If they could roll their large compound eyes, they would.

Guidelines are not rules

I can certainly understand using a guideline like 1:1 or 2:1 as a place to start. Those ratios are easy to remember and palatable to the bees, so there is nothing wrong with using them. But we must remember they are guidelines, not laws the bees etched on stone tablets.

These guidelines are intended to produce a syrup that resembles an “average” nectar, but averages are often theoretical. I just read that the average American woman of childbearing age has 1.9 children. But how many women do you know with 1.9 children? Furthermore, how many average woman do you know with 1.9 children?

My point is that even if 1:1 syrup was an accurate mathematical average of all nectars, it would still not represent any particular nectar in the real world. So when people tell me they tossed their syrup because they added too much sugar, or spent all night trying to figure out how to measure the ingredients to make five gallons, it is my turn for eye rolling. Close is good enough. Even not so close is good enough.

So much to learn

Beekeeping is complex and I understand that, but I think it’s strange that I receive about four times as many sugar syrup questions as I do Varroa mite questions. While miscalculated syrup is meaningless to a colony, poorly managed Varroa can destroy it. Usually, by the time I get the mite question, the colony is already gone.

It makes me wonder what we as beekeepers, writers, speakers, and presenters are doing wrong. How can we help new beekeepers sort out what is important and what isn’t? I keep thinking that explaining why—and giving specific reasons and examples—will help, but I see mixed results. Any thoughts?

Rusty
HoneyBeeSuite

Hydroxymethylfurfural in sugar syrup

Hydroxymethylfurfural (HMF) is a naturally-occurring organic acid with the formula C6H6O3. It is often formed during the dehydration of sugars, especially fructose, and is known to be toxic to honey bees.

Much has been written during the past few years about the occurrence of HMF in high-fructose corn syrup* (HFCS), but that is certainly not the only place where it is found.

Regular table sugar (sucrose) is a disaccharide, meaning it is composed of two monosaccharides. In the case of sugar, those monosaccharides are glucose and fructose. Sugar is easily broken down into its components parts. The process is called inversion, and the resulting product is called invert sugar. Once the sugar is inverted, the fructose portion can dehydrate and form HMF.

Honey bees do it with invertase

The honey stomach contains invertase, an enzyme that inverts sucrose into glucose and fructose. Invertase by itself does not increase the production of HMF. However, the inverted product becomes acidic because the fructose donates a proton during the reaction and thus behaves like an acid.

The production of HMF from fructose can be enhanced in a number of ways. Heat, for example, increases the production of HMF. Honey that was heated contains more, HFCS that was heated contains more, and sugar syrup that was heated contains more. Acids that are used to invert sugar also speed up the process. Citric acid, vinegar, or cream of tartar (potassium bitartrate) added to sugar syrup can rapidly increase the formation of HMF. And time alone can increase HMF as well. Old HFCS contains higher levels of HMF, as does old honey.

High HMF equals high mortality

You can find many articles detailing the numbers, but basically the higher the HMF levels, the higher the bee mortality. Low levels of HMF may be such that we can’t easily recognize the increased mortality. For example, if you have a 10-15% bee mortality due to HMF, you may not notice it. But if you couple that with mortality due to mites or a pathogen, the extra bee deaths may be enough to push the colony over the edge.

I can’t say that I ever noticed extra bee deaths when I was feeding cooked fondant. I switched to uncooked sugar several years ago out of sheer dislike for the process. But when I look at the science behind the production of HMF, I can’t see any reason for heating sugar. Why take the risk? Bees are equipped to invert the sugar themselves without producing HMF.

On the other hand, is feeding old honey worse than feeding newly cooked fondant? The answer is a moving target—a complex subject with no easy answers.

Isn’t the pH of sugar bad for bees?

Related to the discussion of HMF is the often heard admonition that feeding syrup or granulated sugar is bad because the pH of sugar is about 7 (neutral) whereas the pH of honey is down around 3 or 4 (quite acidic). This argument assumes that the pH of nectar is the same as the pH of honey, but I don’t believe that is a safe assumption.

When bees process sugar syrup, they treat it like nectar, adding enzymes, storing it, and drying it. So the pH of syrup should be compared to the pH of nectar, not the pH of honey (the finished product).

Since many nectars contain sucrose, it is most likely that honey bees will make the nectar more acidic by inverting the sucrose, just as sugar syrup becomes more acidic after inversion into glucose and fructose. I don’t know the pH of nectar, although I assume there is a wide range. But the pH of nectar is the number we need to know before we can conclude that the pH of sugar is somehow harmful to bees.


*LeBlanc, B. W.; Eggleston, G; Sammataro, D; Cornett, C; Dufault, R; Deeby, T; St. Cyr, E (2009) Formation of Hydroxymethylfurfural in Domestic High-Fructose Corn Syrup and Its Toxicity to the Honey Bee (Apis mellifera). Journal of Agricultural and Food Chemistry 57: 7369-7376

Rusty
Honey Bee Suite

HMF molecule png
HMF molecule

 

Rebuttal: bees turn sugar into honey

I firmly believe that syrup made from refined sugar cannot be changed into honey, but not everyone agrees. Bees do indeed break down sugar (sucrose) into its component parts (fructose and glucose). But that enzymatic process does not make honey, just as adding invertase to sugar syrup does not make honey.

Although honey is mostly fructose and glucose, it is all the other stuff that gives honey its flavor, aroma, color and nutritional benefits. Honey bees thrive on honey in part because of the nutrients, antioxidants, amino acids, protein, flavonoids, minerals, and pollen that it contains. Yes, these are small in quantity, but they are vital, just as the vitamins and minerals in human food is vital to us.

At any rate, I thought I would let you read the rebuttal and decide for yourself. This comment arrived this week attached to a different post on the same subject, “What’s really in the bottle?” but it rebuts my most recent post “Is your honey cut with sugar syrup?” in the same way. I deleted references to other commenters for their privacy.

Rusty


If sugar and corn syrup and HFCS does not come from a plant, where, pray tell, does it come from???

Rusty, while you may be attributed with having the patience of Job, your love of bees is more in question.

We highly discourage ANY supplemental sweetener other than PURE CANE sugar (not “pure sugar,” nor corn syrup in any form, because of the pesticides used on those plants, as well as genetic modifications to the plants (sugar beets and corn) used to produce other products.

We (as well as many beekeepers the world over) feed our bees sweetened water throughout the year, particularly during the early spring and autumn months, for the VERY simple reason that the BEES (not the beekeepers) need this sweetened water to LIVE.

The bees are well able to convert this PLANT sweetened water into HONEY, regardless the pedantic arguments, and the hive utilizes this honey throughout the winter months, to survive and live.

Now, in regards to the “clear color” of honey, or non-nectar honey – this is a prime example of people over-thinking nature.

Clear honey (or bee-product), is simply honey that has not aged. Like fine wines, honey ages, due to the bacteria and enzymes in the bees’ pre-digestion. Honey that is in uncapped honeycomb cells has not sufficiently dehydrated enough to be capped and age.

Once capped, the “bee-product” darkens over time. Our sugar-syrup fed bee colonies produce HONEY from early spring, as soon as the worker bees can get out and find some sweet liquids to bring back to the hive. They then make honey until the cold temperatures force them to ball up and keep the queen warm over the winter, when the cycle continues. During this period, the bees consume the honey stores they have produced since early spring.

Honeycomb that we have harvested in fall (we have top bar, not Langstroth hives) shows all shades of color, from pale and almost water clear, to deep amber, almost brown. This is not due to the chemical make up of the honey, be it nectar or sugar produced. This is due to the aging of the bee product itself, and uncapped honey cells that contain a higher water content. Please stop over-thinking the color situation. Pure nectar honey would display the same thing.

If sugar water (from plants), did not make honey, the BEES would not be able to survive winter. The fact that humans harvest the food that these insects produce for their personal survival is secondary, regardless the monetized commercialization of the product.

I, along with [deleted], would love to see the chemical breakdown of the supposed “bee product,” in comparison with “nectar honey,” as I suspect little to no difference, beyond the aforementioned minerals and protein content.

I would also love to see the survival rate of bees on the planet increase, not for the consumption of honey or “other bee product,” but for the survival of humans and plants. Any efforts that contribute to bee populations should be encouraged, not discouraged over the semantics and sources of the sweetened liquid bees consume to produce HONEY.

While I cannot speak for any large, commercial operations attempting to sell and profit from “non-plant sweeetner-fed bee product” (and while there is “sugar-free honey,” this discussion is not about that), I can, as a private, small-scale, beekeeper, speak for the bees, in that sugar water (and ONLY pure cane sugar water) is FAR from being a money maker. Thirsty bees can drink gallons a day, and at a 1:1 ratio, a 50# bag of sugar only makes a little over 6 gallons of sugar water.

That sugar water then has to dehydrate and be capped by the bees, and then age to become honey. Time is money, you know.

And not all of the honey produced can be harvested. Sufficient stores of the sugar-water produced honey must be left for the hive to consume over the winter.

Harvested honey then has to be processed, whether by centrifuge, as is the case for Langstroth hives, or by crushing the comb, for top bar hives. Labor is money. So, the snarky worry about profiteering from sugar-water fed bees is utterly needless.

Bottom line, folks, if you are beekeeping in any form, it should, first and foremost be for the bees. Wasting your energies over stupid semantics, instead of focusing on the bees is not helping the cause.

Evil profiteers will always be evil. But looking for evil in every little thing, and pedantically castigating sugar water feeding as not being honey, or somehow contributing to the evil men do in the name of money is truly missing the forest for a chipped piece of bark on a very small tree.

Love bees.
~Moz

How to feed syrup in winter

The following method of feeding syrup in winter was sent to me by Wayne Davidson of St Charles, Idaho. Although his climate is cold and the winters long, Wayne has been using this method successfully for three years.

The reason it works, I believe, is that the syrup is kept in an insulated compartment right above the cluster. The syrup is surrounded by wood chip insulation on three sides and foam insulation above. We know from experimentation (and logic) that the warmest part of the hive (aside from the cluster itself) is the area just above the cluster. The insulation traps the heat from the cluster and keeps the syrup warm enough for the bees to drink.

Here is a description of Wayne’s set-up in his own words:

  • I tried to capitalize on everything I could since our winters are long. First, I moved the hives to the south side of the house and set them close to benefit from radiant heat when the sun shines. I got this idea from the dog; he always napped here even in the winter months.

  • Some years we can have nighttime temps in the teens clear until April 21, and nothing growing until late May. So I wanted to feed the bees without causing stress. That’s when I started putting the top feeder on in the fall at the last inspection. It serves as a nice lid with a ventilation opening. I added wood chips/shavings, the type you get at the feed store for livestock, for a little insulation, but also to catch whatever moisture might be in the box.

  • I filled the pan with syrup and put the inner cover on followed by the foam insulation, and then the outer cover.

  • I fully realize that I am leaving a pan of water on top of the hive. My reasoning is, “So what if it freezes?” it can’t break anything, and when it thaws out it’s still there. Second, the bees don’t have to mess with it until it’s warm enough to explore.

  • Moisture was a worry at first, but not any more. If water evaporates it has a way out though the hole in the foam, and out the outer cover. I went to the pitched roof for the telescoping cover just for this reason. It provides an attic space that is always venting, winter and summer. (When I tried this set up with flat tops, they didn’t vent as well and some mold formed on the underside of the inner cover. Still, if any water condensed it would be on the inner cover and right above the pan or the shavings, and any drips still won’t fall on the bees.)

The results

  • The syrup never appeared to freeze. I admit I only checked the feeders on sunny days when the ambient temperature could be 10-15 F, but next to the house considerably warmer. If the syrup froze in the night it was thawed when I checked. Still opening the lid had little effect on the bees since they never were exposed directly to the cold air.

  • Last year I fed every two or three weeks weather permitting. While some colonies ate everything I gave them, and were often begging for more when I opened the lid, some didn’t touch it until spring when they started laying again.

  • While there was some mold on the inner covers that didn’t vent well as I mentioned, I saw no evidence of mold, or dampness of any kind in the hive just below the feeder in the spring on the first inspection.

  • In the photos you will notice something different in the pan. This year I thought I would warm some honey that had crystallized and feed it in the feeder. Well this colony didn’t eat it very fast and now it is setting up again. When I took this picture the honey was soft enough I could easily scoop it with my finger, but it wouldn’t flow. I will go back to just syrup in the pans.

  • This is my third winter doing this and I still like the results. I have used a commercial top feeder, but I only fill half of it since they are so big and then fill the other half with shavings.

For years I’ve said you can’t feed syrup in winter, but now I see that is not entirely true. Wayne’s system takes advantage of a number of factors: he uses good in-hive insulation, he positions the hives in the sun with a wind break, and he sets the syrup directly above the bees.

Good job. Thank you, Wayne.

Rusty
HoneyBeeSuite

Top-feeder-001-Davidson
Wayne’s hives are on the sunny side of the house, which provides warmth and a wind break. © Wayne Davidson.
Top-feeder-002-Davidson
The feeder is in the purple box below the inner cover. © Wayne Davidson.
Top-feeder-003-Davidson
A thick layer of foam insulation is placed above the inner cover. © Wayne Davidson.
Top-feeder-004-Davidson
The gabled roof provided the best ventilation. I love that the vent closure is hinged. © Wayne Davidson.
Top-feeder-005-Davidson
The feeder tray is surrounded by wood chips which trap warm air and absorb excess moisture. In this photo, partially crystallized honey is in the tray. © Wayne Davidson.
Top-feeder-006-Davidson
The feeder can be refilled without chilling the bees: just pour in the syrup and replace the top pieces. © Wayne Davidson.

When the feed is too close

A beekeeper near San Francisco complained that her bees wouldn’t leave her hummingbird feeder alone, so she set up an open feeder containing sugar syrup directly in front of her hives to divert the bees from the hummingbirds. Much to her dismay, the bees continued to dine at the bird feeder and ignore the syrup she provided in her apiary.

She decided that her bees must prefer hummingbird nectar over plain sugar syrup, so she replaced the syrup in the bee feeder with hummingbird food mixed with water. Still the bees ignored their feeder and returned to join the hummingbirds. What is going on?

As we know, honey bees are brilliant at pointing their sisters to distant food sources. The waggle dance is used for food sources that are far from the hive, and the round dance—which contains less information—is used for sources that are less than about 50-70 meters from the hive.

But according to some observers, honey bees have a problem when the source is very close. Why is this?

Jürgen Tautz in The Buzz about Bees says this about the round dance:

A round dance contains only some information about the quality feeding site. An indication is merely given about what to look for, and that this source can be found close to the nest. A bee that returns from visiting a cherry flower will smell like cherries, and a cherry tree can be found easily enough after a few flight around the hive.

But a bee coming home with a sample of sugar syrup isn’t going to smell like a flower. So even though the sugar tastes sweet, it will be difficult for a bee to explain the location to her nest mates if the syrup is less than 50-70 meters away. If it doesn’t look like a flower, and it doesn’t smell like a flower, the bees really have no reason to check it out. Some will probably find it—more or less by accident—but when they return home to report their finding, they have the same problem: how to explain the location.

In this case, it was probably much easier for the bees to locate the hummingbird feeder (which was much further away and brightly colored) than the open bee feeder that was in tripping distance of the hives. It seems that the bees will eventually find these sources, but the process is more random and takes longer than you might expect.

I have found that a drop of flavoring oil—something like tea tree, spearmint, lemon grass, anise, or peppermint—solves the problem in no time. When the bee returns to the hive smelling delicious, and she explains that the source is nearby by using the round dance, her nest mates will search in the vicinity of the hive for the scent she has delivered and immediately find the source, even if it doesn’t look like a flower.

Rusty
HoneyBeeSuite

Let the hummingbirds eat in peace. © Rusty Burlew.
Let the hummingbirds eat in peace. © Rusty Burlew.